Strain-stiffening of athermal floppy networks

Edan Lerner

Institute for Theoretical Physics University of Amsterdam

November 2022

Universiteit van Amsterdam

acknowledgments

Matthieu Wyart

Gustavo Düring

PONTIFICIA Universidad Católica De Chile

Eran Bouchbinder

strain stiffening

strain stiffening is the deformation-induced increase in a material's elastic modulus

strain stiffening is the deformation-induced increase in a material's elastic modulus

Sharma et al., Nature Physics 12, 584 (2016)

strain stiffening is the deformation-induced increase in a material's elastic modulus

today: why? how?

Sharma et al., Nature Physics 12, 584 (2016)

strain stiffening is the deformation-induced increase in a material's elastic modulus

fibers that are **easy to bend** but **hard to stretch**

collagen networks

Sharma et al., Nature Physics 12, 584 (2016)

non-Brownian suspension viscosity

non-Brownian suspension viscosity

• model (for any disordered material): unit masses connected by Hookean springs

• what are floppy networks?

• model (for any disordered material): unit masses connected by Hookean springs

• what are **floppy networks**?

• geometric analysis of strain-stiffening networks - states of self-stress

- what are floppy networks?
- geometric analysis of strain-stiffening networks states of self-stress
- adding **bending forces** into the picture

- what are floppy networks?
- geometric analysis of strain-stiffening networks states of self-stress
- adding **bending forces** into the picture
- scaling theory of strain stiffening

- what are floppy networks?
- geometric analysis of strain-stiffening networks states of self-stress
- adding **bending forces** into the picture
- scaling theory of strain stiffening
- relation to other jamming problems & some open questions

disordered networks of masses connected by relaxed Hookean springs

disordered networks of masses connected by **relaxed** Hookean springs key control parameter: coordination z

disordered networks of masses connected by **relaxed** Hookean springs key control parameter: coordination z

disordered networks of masses connected by **relaxed** Hookean springs key control parameter: coordination $z < z_{
m c} \equiv 2 imes d$

$G \equiv \text{shear modulus}$ $d \equiv \text{dimension of space}$

'floppy modes' are zero-energy modes. They are displacements u that do **not** stretch **nor** compress any spring

'floppy modes' are zero-energy modes. They are displacements \boldsymbol{u} that do **not** stretch **nor** compress any spring

if $\hat{m{n}}_{ij}\cdot(m{u}_j-m{u}_i)=0$ for all springs $_{i,j}$

 $\Rightarrow u$ is a floppy mode

'floppy modes' are zero-energy modes. They are displacements *u* that do **not** stretch **nor** compress any spring

if $\mathcal{S}|u
angle=0$

 $\Rightarrow u$ is a floppy mode

'floppy modes' are zero-energy modes. They are displacements \boldsymbol{u} that do **not** stretch **nor** compress any spring

if $\mathcal{S}|u
angle=0$

 $\Rightarrow u$ is a floppy mode

 ${\cal S}$ is known as the 'compatibility matrix'

floppy networks do not feature 'states of self-stress'

'states of self-stress' are <u>assignments</u> of spring-forces that are **vectorically self-balanced**

floppy networks do not feature 'states of self-stress'

'states of self-stress' are <u>assignments</u> of spring-forces that are **vectorically self-balanced**

floppy networks do not feature 'states of self-stress'

'states of self-stress' are <u>assignments</u> of spring-forces that are **vectorically self-balanced**

if $\mathcal{S}^T | f
angle = \mathbf{0}$

 \Rightarrow $|f\rangle$ is a state of self-stress

floppy networks <u>do not</u> feature 'states of self-stress' – why do we care about this —?

floppy networks **do not** feature 'states of self-stress' – why do we care about this **?**

Wyart (phd thesis, 2005) showed that (for relaxed spring networks)

$$G = \frac{1}{V} \sum_{\substack{\text{states of} \\ \text{self-stress } \varphi_{\ell}}} \langle \varphi_{\ell} | \partial r / \partial \gamma \rangle^2$$

floppy networks <u>do not</u> feature 'states of self-stress' – why do we care about this <a>?

Wyart (phd thesis, 2005) showed that (for relaxed spring networks)

$$G = \frac{1}{V} \sum_{\text{states of} \atop \text{self-stress } \varphi_{\ell}} \langle \varphi_{\ell} | \partial r / \partial \gamma \rangle^2$$

no states-of-self-stress? then G = 0.

floppy networks – summary

floppy networks – summary

at a critical strain $\gamma_{\rm c}$ the shear modulus jumps

at a critical strain $\gamma_{\rm c}$ the shear modulus jumps

⇒ a state of self-stress developed

at a **critical** strain $\gamma_{\rm c}$ the shear modulus **jumps**

$\Rightarrow a \text{ state of self-stress developed}$ how can this \checkmark be quantified?

recall: states of self-stress

'states of self-stress' are <u>assignments</u> of spring-forces that are **vectorically self-balanced**

if $\mathcal{S}^T | f
angle = \mathbf{0}$

 \Rightarrow $|f\rangle$ is a state of self-stress

recall: states of self-stress

we construct the operator: \mathcal{SS}^T

and consider its spectrum

$$\mathcal{SS}^T|f\rangle = \omega^2|f\rangle$$

recall: states of self-stress

we construct the operator: \mathcal{SS}^T

and consider its **spectrum**

$$\mathcal{SS}^T|f\rangle = \omega^2|f\rangle$$

eigenvectors $|f\rangle$: sets of spring-forces, eigenvalues ω^2 : dimensionless force unballance:

$$\omega^2 = \frac{\langle f | \mathcal{S} \mathcal{S}^T | f \rangle}{\langle f | f \rangle} = \frac{\langle F | F \rangle}{\langle f | f \rangle}$$

eigenvalues ω^2 : dimensionless force unballance:

$$\omega^2 = \frac{\langle f | \mathcal{S} \mathcal{S}^T | f \rangle}{\langle f | f \rangle} = \frac{\langle F | F \rangle}{\langle f | f \rangle}$$

at
$$\gamma_{
m c}$$
, $\omega^2
ightarrow 0$

eigenvalues ω^2 : dimensionless force unballance:

$$\omega^2 = rac{\langle f | \mathcal{S} \mathcal{S}^T | f
angle}{\langle f | f
angle} = rac{\langle F | F
angle}{\langle f | f
angle}$$

spectrum of \mathcal{SS}^T in sheared floppy networks $\left(\mathcal{SS}^T|f\rangle = \omega^2|f\rangle\right)$

spectrum of \mathcal{SS}^T in sheared floppy networks $\left(\mathcal{SS}^T|f\rangle = \omega^2|f\rangle\right)$

isotropic

spectrum of \mathcal{SS}^T in sheared floppy networks $\left(\mathcal{SS}^T|f\rangle = \omega^2|f\rangle\right)$

isotropic

sheared

spectrum of \mathcal{SS}^T in sheared floppy networks $\left(\mathcal{SS}^T|f
ight
angle=\omega^2|f
ight
angle$

sheared

development of a **state of self-stress** \Leftrightarrow

spectrum of SS^T in sheared floppy networks $(SS^T|f\rangle = \omega^2|f\rangle)$

sheared

development of a state of self-stress $\Leftrightarrow \omega_{\min}^2 \to 0$

how does ω_{\min}^2 vanish?

how does ω_{\min}^2 vanish?

In generic elastic solids: $\mathcal{H} \cdot \frac{d\boldsymbol{x}}{d\gamma} = \frac{\partial^2 U}{\partial \boldsymbol{x} \partial \gamma}$

In generic elastic solids: ${\cal H} \cdot {dx \over d\gamma} = {\partial^2 U \over \partial x \partial \gamma}$

 $\phi \Rightarrow$ one can add any zero mode ψ $(\mathcal{H}\cdot\psi\!=\!m{0})$ to the (under-determined) solution for $rac{dm{x}}{d\gamma}$

In generic elastic solids: ${\cal H} \cdot {dx \over d\gamma} = {\partial^2 U \over \partial x \partial \gamma}$

 ϕ one can add any zero mode ψ $({\cal H}\cdot\psi\!=\!{f 0})$ to the (under-determined) solution for ${dm x\over d\gamma}$

to proceed, we introduce a **weak interaction** of typical stiffness κ , that **eliminates** the indeterminacy of dynamics/mechanics

introducing weak interactions

introducing weak interactions

 $(\kappa > 0$ is a singular perturbation)

one useful limit is $\kappa
ightarrow 0^+$, then one finds:

$$\omega_{\min}^2 \sim \gamma_{\rm c} - \gamma$$

 $\left(\text{recall } \mathcal{SS}^T | f \rangle = \omega^2 | f \rangle \right)$

R. Rens, C. Villarroel, G. Düring, and EL, PRE 2018

one useful limit is $\kappa
ightarrow 0^+$, then one finds:

$$\omega_{\min}^2 \sim \gamma_{\rm c} - \gamma$$

 $\left(\text{recall } \mathcal{SS}^T | f \rangle = \omega^2 | f \rangle \right)$

R. Rens, C. Villarroel, G. Düring, and EL, PRE 2018

strain stiffening

operator: $\mathcal{SS}^T, \quad \omega_{\min}^2 \sim \gamma_{
m c} - \gamma$

R. Rens, C. Villarroel, G. Düring, and EL, PRE 2018.

strain stiffening

operator:
$$\mathcal{SS}^T$$
,

$$\omega_{\min}^2 \sim \gamma_{\rm c} - \gamma$$

R. Rens, C. Villarroel, G. Düring, and EL, PRE 2018

plastic instabilities in elastic solids

operator:
$$\mathcal{H} = \frac{\partial^2 U}{\partial x \partial x}, \ \omega_{\min}^2 \sim \sqrt{\gamma_{\rm c} - \gamma}$$

EL, PRE 2016

R. Rens et al. J. Phys. Chem. B, 2016

0.10909

recall that at
$$\kappa = 0$$
:

R. Rens et al. J. Phys. Chem. B, 2016

recall that at $\kappa = 0$:

R. Rens et al. J. Phys. Chem. B, 2016

 \bullet in isotropic states $G\sim\kappa$

$$ullet$$
 if $\delta\gamma>\delta\gamma_{\star}(\kappa)$, $G\sim(\gamma_{
m c}-\gamma)^{-eta}$

 \bullet in isotropic states $G\sim\kappa$

$$ullet$$
 if $\delta\gamma>\delta\gamma_{\star}(\kappa)$, $G\sim(\gamma_{
m c}-\gamma)^{-eta}$

how can these observations be understood?

consider a shear-stiffened network with $~\kappa=0$;

consider a shear-stiffened network with $~\kappa=0$;

recall:

consider a shear-stiffened network with $\ \kappa=0;$ counting DOF vs. interactions, $\sim N$ floppy modes exist

consider a shear-stiffened network with $\kappa = 0$; counting DOF vs. interactions, $\sim N$ floppy modes exist

1) expand the energy in the floppy-mode space:

 $\frac{d^2}{d^2} + \frac{1}{6} \frac{\partial^3 U}{\partial x^3} u^3 + \frac{1}{24} \frac{\partial^4 U}{\partial x^4} u^4$ $U(u) \simeq \frac{1}{2}\frac{\partial}{\partial x}$ stability floppy modes

consider a shear-stiffened network with $\kappa = 0$; counting DOF vs. interactions, $\sim N$ floppy modes exist

1) expand the energy in the floppy-mode space:

$$\begin{array}{l} U(u) \simeq \frac{1}{2} \frac{\partial^2 U}{\partial x^2} u^2 + \frac{1}{6} \frac{\partial^3 U}{\partial x^3} u^3 + \frac{1}{24} \frac{\partial^4 U}{\partial x^4} u^4 \\ & \text{floppy modes} \quad \text{stability} \end{array}$$

consider a shear-stiffened network with $\kappa = 0$; counting DOF vs. interactions, $\sim N$ floppy modes exist

1) expand the energy in the floppy-mode space:

$$\begin{array}{l} U(u) \simeq \frac{1}{2} \frac{\partial^2 U}{\partial x^2} u^2 + \frac{1}{6} \frac{\partial^3 U}{\partial x^3} u^3 + \frac{1}{24} \frac{\partial^4 U}{\partial x^4} u^4 \\ & \text{floppy modes} \quad \text{stability} \end{array}$$

2) turn on weak interactions. Nodes are now unballanced by a force $F_{\rm soft} \sim \kappa$

consider a shear-stiffened network with $~~{\cal K}=0$; counting DOF vs. interactions, $\sim N$ floppy modes exist

1) expand the energy in the floppy-mode space:

 $\begin{array}{l} U(u) \simeq \frac{1}{2} \frac{\partial^2 U}{\partial x^2} u^2 + \frac{1}{6} \frac{\partial^3 U}{\partial x^3} u^3 + \frac{1}{24} \frac{\partial^4 U}{\partial x^4} u^4 \\ & \text{floppy modes} \quad \text{stability} \end{array}$

2) turn on weak interactions. Nodes are now unballanced by a force $F_{\rm soft} \sim \kappa$

3) Nodes move a displacement \mathcal{U}_{\star} & recover mechanical equilibrium when **anharmonic** force balances weak force: $F_{\mathrm{soft}} \sim \kappa \sim F_{\mathrm{stiff}} \sim u_{\star}^3$

consider a shear-stiffened network with $~~{\cal K}=0$; counting DOF vs. interactions, $\sim N$ floppy modes exist

1) expand the energy in the floppy-mode space:

 $\begin{array}{l} U(u) \simeq \frac{1}{2} \frac{\partial^2 U}{\partial x^2} u^2 + \frac{1}{6} \frac{\partial^3 U}{\partial x^3} u^3 + \frac{1}{24} \frac{\partial^4 U}{\partial x^4} u^4 \\ & \text{floppy modes} \quad \text{stability} \end{array}$

2) turn on weak interactions. Nodes are now unballanced by a force $F_{\rm soft} \sim \kappa$

3) Nodes move a displacement \mathcal{U}_{\star} & recover mechanical equilibrium when anharmonic force balances weak force: $F_{\mathrm{soft}} \sim \kappa \sim F_{\mathrm{stiff}} \sim u_{\star}^3$

$$\left(u_{\star}\sim\kappa^{1/3}
ight)$$

(a)

why do we need this 2-step perturbation approach?

why do we need this 2-step perturbation approach?

1) theoretical handle (to be explained hereafter)

why do we need this 2-step perturbation approach?

1) theoretical handle (to be explained hereafter)

2) allows to *simulate* systems at the critical strain (unfeasible otherwise)

properties of perturbed ($\kappa > 0$), strain-stiffened states

properties of perturbed ($\kappa > 0$), strain-stiffened states

1) displacements u_{\star} distort (and ruin) the $\kappa=0$ state-of-self-stress

1) displacements u_{\star} distort (and ruin) the $\kappa=0$ state-of-self-stress

$$\frac{\langle f|\mathcal{S}\mathcal{S}^T|f\rangle}{\langle f|f\rangle} \sim u_\star^2 \sim \kappa^{2/3}$$

1) displacements u_{\star} distort (and ruin) the $\kappa=0$ state-of-self-stress

$$\frac{\langle f|\mathcal{S}\mathcal{S}^T|f\rangle}{\langle f|f\rangle} \sim u_\star^2 \sim \kappa^{2/3}$$

since the stiff network needs to balance the soft ($\sim \kappa$) force, one expects an **amplification** over $\sim \kappa$:

shear stress
$$\sigma \sim \kappa \Big/ \sqrt{rac{\langle f| \mathcal{SS}^T|f
angle}{\langle f|f
angle}} \sim \kappa^{2/3}$$

1) displacements u_{\star} distort (and ruin) the $\kappa=0$ state-of-self-stress

$$\frac{\langle f|\mathcal{S}\mathcal{S}^T|f\rangle}{\langle f|f\rangle} \sim u_\star^2 \sim \kappa^{2/3}$$

since the stiff network needs to balance the soft ($\sim \kappa$) force, one expects an **amplification** over $\sim \kappa$:

hear stress
$$\sigma \sim \kappa / \sqrt{rac{\langle f | \mathcal{SS}^T | f
angle}{\langle f | f
angle}} \sim \kappa^{2/3}$$

properties of perturbed ($\kappa > 0$), strain-stiffened states

2) displacements u_{\star} distort (and ruin) the $\kappa = 0$ zero modes:

 $\mathcal{H} = \mathcal{H}_1 + \overline{\mathcal{H}_2 + \mathcal{H}_{soft}}$

stiffness term:

 $\mathcal{H}_1 = \sum_{\langle i,j \rangle} \boldsymbol{n}_{ij} \bigotimes \boldsymbol{n}_{ij} \quad \Rightarrow \quad \delta \mathcal{H}_1 \sim \delta \boldsymbol{n} \bigotimes \delta \boldsymbol{n} \sim u_\star^2 \sim \kappa^{2/3}$

force term:

$$\mathcal{H}_2 \sim f \quad \Rightarrow \quad \delta \mathcal{H}_2 \sim f \sim \kappa \Big/ \sqrt{\frac{\langle f | \mathcal{SS}^T | f \rangle}{\langle f | f \rangle}} \sim \kappa^{2/3}$$

$$\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_{\mathrm{soft}}$$

stiffness $\sim \kappa^{2/3}$ force $\sim \kappa^{2/3}$ bending

force term:

$$\mathcal{H}_2 \sim f \quad \Rightarrow \quad \delta \mathcal{H}_2 \sim f \sim \kappa \Big/ \sqrt{\frac{\langle f | \mathcal{SS}^T | f \rangle}{\langle f | f \rangle}} \sim \kappa^{2/3}$$

$$\begin{aligned} \boldsymbol{\mathcal{H}} &= \boldsymbol{\mathcal{H}}_1 + \boldsymbol{\mathcal{H}}_2 + \boldsymbol{\mathcal{H}}_{\mathrm{soft}} \\ & & \\ \text{stiffness} \sim \kappa^{2/3} & \text{force} \sim \kappa^{2/3} & \text{bending} \sim \kappa \end{aligned}$$

2) displacements u_{\star} distort (and ruin) the $\kappa=0$ zero modes:

$$\begin{aligned} \boldsymbol{\mathcal{H}} &= \boldsymbol{\mathcal{H}}_1 + \boldsymbol{\mathcal{H}}_2 + \boldsymbol{\mathcal{H}}_{\mathrm{soft}} \\ & \\ \text{stiffness} \sim \kappa^{2/3} & \text{force} \sim \kappa^{2/3} & \text{bending} \sim \kappa \end{aligned}$$

3) shear modulus $G = G_{\text{affine}} + G_{\text{nonaffine}}$

3) shear modulus $G = G_{\text{affine}} + G_{\text{nonaffine}}$

3) shear modulus
$$G = G_{affine} + G_{nonaffine}$$

3) shear modulus
$$G = G_{\text{affine}} + G_{\text{nonaffine}}$$

3) shear modulus
$$G = G_{\text{affine}} + G_{\text{nonaffine}}$$

$$G_{ ext{nonaffine}} = \sum_{\ell} rac{ig(m{F}_{\gamma} \cdot m{\psi}_{\ell} ig)^2}{\omega_{\ell}^2}$$

3) shear modulus
$$G = G_{\text{affine}} + G_{\text{nonaffine}}$$

$$G_{\text{nonaffine}} = \sum_{\ell} \frac{\left(\mathbf{F}_{\gamma} \cdot \boldsymbol{\psi}_{\ell} \right)^2}{\omega_{\ell}^2}$$
$$\omega_{\text{soft}} \sim \kappa^{1/3}$$

3) shear modulus
$$G = G_{\text{affine}} + G_{\text{nonaffine}}$$

$$G_{\text{nonaffine}} = \sum_{\ell} \frac{(F_{\gamma} \cdot \psi_{\ell})^2}{\omega_{\ell}^2}$$

 $\omega_{\text{soft}} \sim \kappa^{1/3} \quad \text{but } F_{\gamma} \equiv \frac{\partial^2 U}{\partial \gamma \partial x} \simeq S^T |\partial r / \partial \gamma \rangle$ (in the $\kappa \to 0$ limit)
and $S |\psi\rangle \sim \omega \sim \kappa^{1/3}$

3) shear modulus $G = G_{affine}$ + $G_{nonaffine}$

$$\begin{split} G_{\text{nonaffine}} &= \sum_{\ell} \frac{\left(\mathbf{F}_{\gamma} \cdot \boldsymbol{\psi}_{\ell} \right)^2}{\omega_{\ell}^2} \sim \frac{\kappa^{2/3}}{\kappa^{2/3}} \sim \kappa^0 \text{ is regular too!} \\ & \\ \omega_{\text{soft}} \sim \kappa^{1/3} \quad \text{but } \mathbf{F}_{\gamma} \equiv \frac{\partial^2 U}{\partial \gamma \partial \boldsymbol{x}} \simeq \mathcal{S}^T |\partial r / \partial \gamma \rangle \text{ (in the } \kappa \to 0 \text{ limit)} \\ & \\ & \text{and } \mathcal{S} | \boldsymbol{\psi} \rangle \sim \omega \sim \kappa^{1/3} \end{split}$$

3) shear modulus $G = G_{affine}$ + $G_{nonaffine}$

$$G_{
m nonaffine} = \sum_\ell rac{\left(m{F}_\gamma\cdotm{\psi}_\ell
ight)^2}{\omega_\ell^2}\sim rac{\kappa^{2/3}}{\kappa^{2/3}}\sim \kappa^0~~$$
is regular too

3) shear modulus $G = G_{affine}$ + $G_{nonaffine}$

why worry?

$$G_{\text{nonaffine}} = \sum_{\ell} \frac{\left(\mathbf{F}_{\gamma} \cdot \boldsymbol{\psi}_{\ell}\right)^{2}}{\omega_{\ell}^{2}} \sim \frac{\kappa^{2/3}}{\kappa^{2/3}} \sim \kappa^{0} \text{ is regular too!}$$
again, $\kappa > 0$ is a
singular perturbation

coordinates

4) nonlinear shear modulus $dG/d\gamma$

$$rac{dG}{d\gamma} \simeq rac{1}{V} \sum_{\ell m n} rac{(oldsymbol{\psi}_\ell \cdot oldsymbol{F}_\gamma)(oldsymbol{\psi}_n \cdot oldsymbol{F}_\gamma)(oldsymbol{\mathcal{U}}^{\prime\prime\prime} \colon oldsymbol{\psi}_\ell \psi_m oldsymbol{\psi}_n)}{\omega_\ell^2 \omega_m^2 \omega_n^2} + \mathcal{O}(oldsymbol{\mathcal{H}}^{-2})$$

4) nonlinear shear modulus $dG/d\gamma$

$$\frac{dG}{d\gamma} \simeq \frac{1}{V} \sum_{\ell m n} \frac{(\boldsymbol{\psi}_{\ell} \cdot \boldsymbol{F}_{\gamma})(\boldsymbol{\psi}_{m} \cdot \boldsymbol{F}_{\gamma})(\boldsymbol{\psi}_{n} \cdot \boldsymbol{F}_{\gamma})}{\omega_{\ell}^{2} \omega_{m}^{2} \omega_{n}^{2}} + \mathcal{O}(\boldsymbol{\mathcal{H}}^{-2})$$

for soft modes $\boldsymbol{\psi}$: (i) $\boldsymbol{\psi} \cdot \boldsymbol{F}_{\gamma} \sim \omega_{\text{soft}} \sim \kappa^{1/3}$ (ii) $\boldsymbol{\mathcal{U}}^{\prime\prime\prime}$: $\boldsymbol{\psi} \boldsymbol{\psi} \boldsymbol{\psi} \sim u_{\star} \sim \kappa^{1/3}$

(4) nonlinear shear modulus $dG/d\gamma$

$$\frac{dG}{d\gamma} \simeq \frac{1}{V} \sum_{\ell m n} \frac{(\boldsymbol{\psi}_{\ell} \cdot \boldsymbol{F}_{\gamma})(\boldsymbol{\psi}_{m} \cdot \boldsymbol{F}_{\gamma})(\boldsymbol{\psi}_{n} \cdot \boldsymbol{F}_{\gamma})}{\omega_{\ell}^{2} \omega_{m}^{2} \omega_{n}^{2}} + \mathcal{O}(\boldsymbol{\mathcal{H}}^{-2})$$

for soft modes ψ : (i) $\boldsymbol{\psi} \cdot \boldsymbol{F}_{\gamma} \sim \omega_{\text{soft}} \sim \kappa^{1/3}$ (ii) $\boldsymbol{\mathcal{U}}^{\prime\prime\prime}$: $\boldsymbol{\psi} \boldsymbol{\psi} \boldsymbol{\psi} \sim u_{\star} \sim \kappa^{1/3}$

$$\Rightarrow \frac{dG}{d\gamma} \sim \frac{\kappa^{4/3}}{\kappa^2} \sim \kappa^{-2/3}$$

4) nonlinear shear modulus $dG/d\gamma$

$$rac{dG}{d\gamma} \simeq rac{1}{V} \sum_{\ell m n} rac{(oldsymbol{\psi}_\ell \cdot oldsymbol{F}_\gamma)(oldsymbol{\psi}_m \cdot oldsymbol{F}_\gamma)(oldsymbol{\psi}_m \cdot oldsymbol{F}_\gamma)(oldsymbol{\mathcal{U}}''' \cdot oldsymbol{\psi}_\ell \psi_m oldsymbol{\psi}_n)}{\omega_\ell^2 \omega_m^2 \omega_n^2} + \mathcal{O}(oldsymbol{\mathcal{H}}^{-2})$$

for soft modes
$$\psi$$
: (i) $\boldsymbol{\psi} \cdot \boldsymbol{F}_{\gamma} \sim \omega_{\mathrm{soft}} \sim \kappa^{1/3}$
(ii) $\boldsymbol{\mathcal{U}}''' : \cdot \boldsymbol{\psi} \boldsymbol{\psi} \boldsymbol{\psi} \sim u_{\star} \sim \kappa^{1/3}$

$$\Rightarrow \frac{dG}{d\gamma} \sim \frac{\kappa^{4/3}}{\kappa^2} \sim \kappa^{-2/3}$$

5) nonaffine displacements $ec{u}_{_{
m na}}$

$$u_{\scriptscriptstyle \mathrm{na}}^2\simeq\sum_\ell rac{(oldsymbol{\psi}_\ell\cdotoldsymbol{F}_\gamma)^2}{\omega_\ell^4}$$

5) nonaffine displacements $ec{u}_{ extsf{na}}$

$$u_{\scriptscriptstyle \mathrm{na}}^2\simeq\sum_\ell rac{(oldsymbol{\psi}_\ell\cdotoldsymbol{F}_\gamma)^2}{\omega_\ell^4}$$

for soft modes $\pmb{\psi}_{:} \; \overline{\pmb{\psi} \cdot \pmb{F}_{\gamma}} \sim \omega_{
m soft} \sim \kappa^{1/3}$

5) nonaffine displacements $ec{u}_{ extsf{na}}$

$$u_{\scriptscriptstyle \mathsf{na}}^2\simeq\sum_\ellrac{(oldsymbol{\psi}_\ell\!\cdotoldsymbol{F}_\gamma)^2}{\omega_\ell^4}$$

for soft modes $\pmb{\psi}:\; m{\psi}\cdotm{F}_{\gamma}\sim\omega_{
m soft}\sim\kappa^{1/3}$

$$\Rightarrow u_{\rm \tiny na}^2 \sim \frac{\kappa^{2/3}}{\kappa^{4/3}} \sim \kappa^{-2/3}$$

5) nonaffine displacements $ec{U}_{ extsf{na}}$

$$u_{\scriptscriptstyle \mathrm{na}}^2\simeq\sum_\ell rac{(oldsymbol{\psi}_\ell\cdotoldsymbol{F}_\gamma)^2}{\omega_\ell^4}$$

for soft modes
$$\pmb{\psi}_{:} \; m{\psi} \cdot m{F}_{\gamma} \sim \omega_{
m soft} \sim \kappa^{1/3}$$

$$\Rightarrow u_{\rm \tiny na}^2 \sim \frac{\kappa^{2/3}}{\kappa^{4/3}} \sim \kappa^{-2/3}$$

Shivers, Sharma, MacKintosh, arXiv:2203.04891

(i) state-of-self-stress destroyed by
$$\sqrt{rac{\langle f|\mathcal{SS}^T|f
angle}{\langle f|f
angle}}\sim\kappa^{1/3}$$

(i) state-of-self-stress destroyed by
$$\sqrt{rac{\langle f|\mathcal{SS}^T|f
angle}{\langle f|f
angle}}\sim\kappa^{1/3}$$

(ii) floppy modes acquire finite frequency $\omega_{
m soft} \sim \kappa^{1/3}$

(i) state-of-self-stress destroyed by $\sqrt{rac{\langle f|\mathcal{SS}^T|f
angle}{\langle f|f
angle}}\sim\kappa^{1/3}$

(ii) floppy modes acquire finite frequency $\omega_{
m soft} \sim \kappa^{1/3}$

 $\overline{(iii)}$ shear modulus $G\sim\kappa^0$

(i) state-of-self-stress destroyed by $\sqrt{rac{\langle f|\mathcal{SS}^T|f
angle}{\langle f|f
angle}}\sim\kappa^{1/3}$

(ii) floppy modes acquire finite frequency $\omega_{
m soft} \sim \kappa^{1/3}$

(iii) shear modulus $G \sim \kappa^0$

(iv) nonlinear modulus $rac{dG}{d\gamma} \sim \kappa^{-2/3}$

(i) state-of-self-stress destroyed by $\sqrt{rac{\langle f|\mathcal{SS}^T|f
angle}{\langle f|f
angle}}\sim\kappa^{1/3}$

(ii) floppy modes acquire finite frequency $\omega_{
m soft} \sim \kappa^{1/3}$

(iii) shear modulus $G \sim \kappa^0$

(iv) nonlinear modulus $rac{dG}{d\gamma} \sim \kappa^{-2/3}$

(v) nonaffine displacements $u_{\scriptscriptstyle ext{n.a.}}\sim \sim \kappa^{-2/3}$

recap:

scaling theory for the shear modulus G:

scaling theory for the shear modulus G:

(i) we start with the ansatz:
$$G(\gamma,\kappa)\sim \mathcal{F}\left(rac{\gamma_{
m c}-\gamma}{\delta\gamma_{\star}(\kappa)}
ight)$$

(iii) since $G(\gamma_{
m c})\sim\kappa^0$ is finite, ${\cal F}(0)=G(\gamma_{
m c})$

scaling theory for the shear modulus G:

(i) we start with the ansatz: $G(\gamma, \kappa) \sim \mathcal{F}\left(\frac{\gamma_{\rm c} - \gamma}{\delta \gamma_{+}(\kappa)}\right)^{\circ}$

(ii) since $\frac{dG}{d\gamma} \sim \frac{1}{\kappa^{2/3}}$ and $\frac{dG}{d\gamma} = \frac{d\mathcal{F}/dx}{\delta\gamma_{\star}(\kappa)}$ then the strain scale $\delta\gamma_{\star} \sim \kappa^{2/3}$ (& $d\mathcal{F}/dx$ is finite)

(iii) since $G(\gamma_{\rm c})\sim\kappa^0$ is finite, ${\cal F}(0)=G(\gamma_{\rm c})$

(iv) since
$$\left. \frac{d\mathcal{F}}{dx} \right|_{x=0}$$
 is finite, then $G(\gamma_{\mathrm{c}}) - G(\gamma) \sim rac{\gamma_{\mathrm{c}} - \gamma}{\kappa^{2/3}}$ for $\gamma_{\mathrm{c}} - \gamma \lesssim \kappa^{2/3}$

scaling theory for the shear modulus G:

(i) we start with the ansatz: $G(\gamma,\kappa)\sim \mathcal{F}\left(rac{\gamma_{
m c}-\gamma}{\delta\gamma_*(\kappa)}
ight)$

(ii) since $\frac{dG}{d\gamma} \sim \frac{1}{\kappa^{2/3}}$ and $\frac{dG}{d\gamma} = \frac{d\mathcal{F}/dx}{\delta\gamma_{\star}(\kappa)}$ then the strain scale $\delta\gamma_{\star} \sim \kappa^{2/3}$ (& $d\mathcal{F}/dx$ is finite)

(iii) since $G(\gamma_{\rm c})\sim\kappa^0$ is finite, ${\cal F}(0)=G(\gamma_{\rm c})$

(iv) since
$$\left.\frac{d\mathcal{F}}{dx}\right|_{x=0}$$
 is finite, then $G(\gamma_{\mathrm{c}}) - G(\gamma) \sim rac{\gamma_{\mathrm{c}} - \gamma}{\kappa^{2/3}}$ for $\gamma_{\mathrm{c}} - \gamma \lesssim \kappa^{2/3}$

(v) since $G \sim \kappa$ for $\gamma \ll \gamma_{
m c}$ then $\mathcal{F}(x) \sim x^{-3/2}$, or $\overline{-G \sim \frac{\kappa}{(\gamma_{
m c} - \gamma)^{3/2}}}$

(iii) since $G(\gamma_{\rm c})\sim\kappa^0$ is finite, ${\cal F}(0)=G(\gamma_{\rm c})$

(iv) since
$$\frac{d\mathcal{F}}{dx}\Big|_{x=0}$$
 is finite, then $G(\gamma_c) - G(\gamma) \sim \frac{\gamma_c - \gamma}{\kappa^{2/3}}$ for $\gamma_c - \gamma \lesssim \kappa^{2/3}$
(v) since $G \sim \kappa$ for $\gamma \ll \gamma_c$ then $\mathcal{F}(x) \sim x^{-3/2}$, or $G \sim \frac{\kappa}{(\gamma_c - \gamma)^{3/2}}$

predictions from scaling theory

predictions from scaling theory

predictions from scaling theory

predictions from scaling theory

predictions from scaling theory

predictions from scaling theory

predictions from scaling theory - scaling away from the critical point

Robbie Rens et al., PRE 2018

predictions from scaling theory - strain scale

Robbie Rens et al., PRE 2018

scaling theory of strain stiffening – summary

scaling theory of strain stiffening – summary

 \rightarrow 2-step procedure: strain with $\kappa=0,$ then turn on $\kappa>0$

scaling theory of strain stiffening - summary

 \rightarrow 2-step procedure: strain with $\kappa = 0$, then turn on $\kappa > 0$

 \rightarrow we argue and validate that $~G\sim\kappa^0~$ and $~dG/d\gamma\sim\kappa^{-2/3}$

scaling theory of strain stiffening - summary

 \rightarrow 2-step procedure: strain with $\kappa = 0$, then turn on $\kappa > 0$

ightarrow we argue and validate that $~G\sim\kappa^0~$ and $~dG/d\gamma\sim\kappa^{-2/3}$

$$ightarrow$$
 simplest scaling ansatz $~G(\gamma,\kappa)\sim \mathcal{F}\left(rac{\gamma_{
m c}-\gamma}{\delta\gamma_{\star}(\kappa)}
ight)$

scaling theory of strain stiffening – summary

 \rightarrow 2-step procedure: strain with $\kappa = 0$, then turn on $\kappa > 0$

ightarrow we argue and validate that $~G\sim\kappa^0~$ and $~dG/d\gamma\sim\kappa^{-2/3}$

$$ightarrow$$
 simplest scaling ansatz $~G(\gamma,\kappa)\sim \mathcal{F}\left(rac{\gamma_{
m c}-\gamma}{\delta\gamma_{\star}(\kappa)}
ight)$

→ predictions: (i) linear variation of $G \sim \gamma_c - \gamma$ with strain below the critical strain γ_c (ii) strain scale $\delta \gamma_{\star} \sim \kappa^{2/3}$ (iii) scaling away from the critical strain $G \sim \frac{\kappa}{(\gamma_c - \gamma)^{3/2}}$

(i) we expect a diverging correlation length $\xi(\kappa) \sim \frac{1}{\sqrt{\frac{\langle f|SS^T|f\rangle}{\langle f|f\rangle}}} \sim \frac{1}{\kappa^{1/3}}$

open questions (i) we expect a diverging correlation length $\ \xi(\kappa) \sim$ $\overline{\kappa^{1/3}}$ $f|\mathcal{SS}^T|f$ C(r)-0.21---0.093 data measured at $\kappa \to 0^+$ and $\gamma < \gamma_c$ $^{40} n^{50}$ $C(r/\xi)$ $\langle f | SS^T | f$ -10^{-15}

Robbie Rens et al., PRE 2018

(i) we expect a diverging correlation length $\xi(\kappa) \sim \frac{1}{\sqrt{|f|SS^T|f|}} \sim \frac{1}{\kappa^{1/3}}$

→ does this correlation length explain the anomalous elasticity seen in responses to point perturbations in fibrous gels?

Probing Local Force Propagation in Tensed Fibrous Gels

Shahar Goren^{1,2,3}, Maayan Levin^{2,3}, Guy Brand², Ayelet Lesman^{1,3,*}, and Raya Sorkin^{2,3,*}

¹School of Mechanical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel ²School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel, Israel ³Center for Chemistry and Physics of Living Systems, Tel Aviv University, Israel ⁴Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel ^{*}These authors jointly supervised this work ^{*}correspondence to emails: ayeletlesman@tauex.tau.ac.il and rsorkin@tauex.tau.ac.il

April 25, 2022

(i) we expect a diverging correlation length $\xi(\kappa) \sim \frac{1}{\sqrt{\langle f|SS^T|f\rangle}} \sim \frac{1}{\kappa^{1/3}}$

→ does this correlation length explain the anomalous elasticity seen in responses to point perturbations in fibrous gels?

(i) we expect a diverging correlation length $\xi(\kappa) \sim \frac{1}{\sqrt{\langle f|SS^T|f\rangle}} \sim \frac{1}{\kappa^{1/3}}$

→ does this correlation length explain the anomalous elasticity seen in responses to point perturbations in fibrous gels?

(i) we expect a diverging correlation length $\xi($

→ does this correlation length explain the anomalous elasticity seen in responses to point perturbations in fibrous gels?

EL and Eran Bouchbinder, arXiv:2209.04237

(ii) what happens at strains larger than $\gamma_{
m c}$?

(ii) what happens at strains larger than $\gamma_{\rm c}?$

Robbie Rens PhD thesis 2019

(ii) what happens at strains larger than $\gamma_{ m c}$?

,does **the same** $\delta\gamma_{\star}(\kappa)$ also hold above $\gamma_{
m c}$?

Robbie Rens PhD thesis 2019

(ii) what happens at strains larger than $\gamma_{\rm c}?$

how does $G(\gamma)$ behave above $\gamma_{
m c}\!+\!\delta\gamma_{\star}(\kappa)$?

Robbie Rens PhD thesis 2019

(iii) is our model too simple? Are we missing essential ingredients? Does 2D tell us about 3D?

non-Brownian suspension viscosity

common to all these problems is the **coupling** of the state-of-self-stress (or the minimal eigenmode of SS^{T}) to the imposed deformation

common to all these problems is the **coupling** of the state-of-self-stress (or the minimal eigenmode of SS^{T}) to the imposed deformation

recall:

Wyart (phd thesis, 2005) showed that (for relaxed spring networks)

$$G = \frac{1}{V} \sum_{\text{states of self-stress } \varphi_{\ell}} \langle \varphi_{\ell} | \partial r / \partial \gamma \rangle^2$$

common to all these problems is the **coupling** of the state-of-self-stress (or the minimal eigenmode of SS^{T}) to the imposed deformation

recall:

Wyart (phd thesis, 2005) showed that (for relaxed spring networks)

$$G = \frac{1}{V} \sum_{\substack{\text{states of} \\ \text{self-stress } \varphi_{\ell}}} \langle \varphi_{\ell} | \partial r / \partial \gamma \rangle^{2}$$
coupling to deformation

common to all these problems is the **coupling** of the state-of-self-stress (or the minimal eigenmode of SS^{T}) to the imposed deformation

if $arphi_{m\ell}$ is a SSS, then the coupling to deformation is $\langle arphi_\ell | \partial r / \partial \gamma
angle$

these couplings increase as a result of self-organization

common to all these problems is the **coupling** of the state-of-self-stress (or the minimal eigenmode of SS^{T}) to the imposed deformation

if $arphi_{m\ell}$ is a SSS, then the coupling to deformation is $\langle arphi_\ell | \partial r / \partial \gamma
angle$

these couplings increase as a result of **self-organization**

acknowledgments

Matthieu Wyart

Gustavo Düring

PONTIFICIA Universidad Católica De Chile

Eran Bouchbinder

further reading:

→ Gustavo Düring, EL, and Matthieu Wyart, Length scales and self-organization in dense suspension flows, PRE 89, 022305 (2014)

→ Robbie Rens, Carlos Villarroel, Gustavo Düring, and EL, Micromechanical theory of strain-stiffening of biopolymer networks, PRE 98, 062411 (2018)

→ EL and Eran Bouchbinder, Scaling theory of critical strain-stiffening in athermal biopolymer networks, arXiv:2208.08204.

 \rightarrow EL and Eran Bouchbinder, Anomalous elasticity of disordered networks, arXiv:2209.04237.

thanks for your attention!