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strain stiffening is the deformation-induced increase

in a material’s elastic modulus

Sharma et al., Nature Physics 12, 584 (2016)

collagen networks

fibers that are easy to bend
but hard to stretch�

�
�

�
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strain stiffening is a member of a set of ‘jamming’ problems:
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disordered networks of masses connected by relaxed Hookean springs

key control parameter: coordination z < zc ≡ 2× d̄

G ≡ shear modulus

d̄ ≡ dimension of space

‘floppy’ networks



‘floppy’ networks feature ‘floppy modes’

‘floppy modes’ are zero-energy modes.

They are displacements u that

do not stretch nor compress any spring

if n̂ij · (uj − ui) = 0 for all springs i, j

⇒ u is a floppy mode



‘floppy’ networks feature ‘floppy modes’

‘floppy modes’ are zero-energy modes.

They are displacements u that

do not stretch nor compress any spring

if n̂ij · (uj − ui) = 0 for all springs i, j

⇒ u is a floppy mode



‘floppy’ networks feature ‘floppy modes’

‘floppy modes’ are zero-energy modes.

They are displacements u that

do not stretch nor compress any spring

if n̂ij · (uj − ui) = 0 for all springs i, j

⇒ u is a floppy mode



‘floppy’ networks feature ‘floppy modes’

‘floppy modes’ are zero-energy modes.

They are displacements u that

do not stretch nor compress any spring

if S|u⟩ = 0

⇒ u is a floppy mode

S is known as the ‘compatibility matrix’



‘floppy’ networks feature ‘floppy modes’

‘floppy modes’ are zero-energy modes.

They are displacements u that

do not stretch nor compress any spring

if S|u⟩ = 0

⇒ u is a floppy mode

S is known as the ‘compatibility matrix’



floppy networks do not feature ‘states of self-stress’

‘states of self-stress’ are assignments of spring-forces

that are vectorically self-balanced



floppy networks do not feature ‘states of self-stress’

‘states of self-stress’ are assignments of spring-forces

that are vectorically self-balanced

if ST |f⟩ = 0

⇒ |f⟩ is a
state of self-stress



floppy networks do not feature ‘states of self-stress’

‘states of self-stress’ are assignments of spring-forces

that are vectorically self-balanced

if ST |f⟩ = 0

⇒ |f⟩ is a
state of self-stress



floppy networks do not feature ‘states of self-stress’

– why do we care about this ?

Wyart (phd thesis, 2005) showed that (for relaxed spring networks)

G =
1
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⟨φℓ|∂r/∂γ⟩2

states of
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what happens when a floppy network is sheared?

at a critical strain γc the shear modulus jumps

⇒ a state of self-stress developed

how can this be quantified?
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spectrum of SST in sheared floppy networks
(
SST |f⟩ = ω2|f⟩
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In generic elastic solids: H · dx
dγ

=
∂2U

∂x∂γ

⇒ one can add any zero mode ψ (H ·ψ=0) to the (under-determined) solution for
dx

dγ

to proceed, we introduce a weak interaction of typical stiffness κ,

that eliminates the indeterminacy of dynamics/mechanics
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strain stiffening

operator: SST , ω2
min ∼ γc − γ

R. Rens, C. Villarroel, G. Düring, and EL, PRE 2018

plastic instabilities in elastic solids

operator: H = ∂2U
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1) theoretical handle (to be explained hereafter)

2) allows to simulate systems at the critical strain (unfeasible otherwise)
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properties of perturbed (κ > 0), strain-stiffened states
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∼ u2⋆ ∼ κ2/3

since the stiff network needs to balance the soft (∼ κ) force,

one expects an amplification over ∼ κ:

shear stress σ ∼ κ/
√
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⟨f |f⟩ ∼ κ2/3
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properties of perturbed (κ > 0), strain-stiffened states

3) shear modulus G = Gaffine +Gnonaffine
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∂γ∂x ≃ ST |∂r/∂γ⟩ (in the κ → 0 limit)

and S|ψ⟩ ∼ ω ∼ κ1/3
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properties of perturbed (κ > 0), strain-stiffened states – summary

(i) state-of-self-stress destroyed by
√

⟨f |SST |f⟩
⟨f |f⟩ ∼ κ1/3

(ii) floppy modes acquire finite frequency ωsoft ∼ κ1/3

(iii) shear modulus G ∼ κ0
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scaling theory for the shear modulus G:

(i) we start with the ansatz: G(γ, κ) ∼ F
(
γc − γ

δγ⋆(κ)

)
(ii) since

dG

dγ
∼ 1

κ2/3
and

dG

dγ
=

dF/dx

δγ⋆(κ)
then the strain scale δγ⋆ ∼ κ2/3

(& dF/dx is finite)
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(iii) since G(γc) ∼ κ0 is finite, F(0) = G(γc)

(iv) since
dF
dx

∣∣∣∣
x=0

is finite, then G(γc)−G(γ) ∼ γc − γ

κ2/3
for γc − γ ≲ κ2/3

(v) since G ∼ κ for γ ≪ γc then F(x) ∼ x−3/2, or G ∼ κ

(γc − γ)3/2
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predictions from scaling theory – scaling away from the critical point

Robbie Rens et al., PRE 2018



predictions from scaling theory – strain scale

Robbie Rens et al., PRE 2018



scaling theory of strain stiffening – summary

→ 2-step procedure: strain with κ = 0, then turn on κ > 0

→ we argue and validate that G ∼ κ0 and dG/dγ ∼ κ−2/3

→ simplest scaling ansatz G(γ, κ) ∼ F
(
γc − γ

δγ⋆(κ)

)
→ predictions: (i) linear variation of G∼γc−γ with strain below the critical strain γc

(ii) strain scale δγ⋆ ∼ κ2/3

(iii) scaling away from the critical strain G ∼ κ

(γc − γ)3/2
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open questions

(i) we expect a diverging correlation length ξ(κ) ∼ 1√
⟨f |SST |f⟩

⟨f |f⟩

∼ 1

κ1/3

data measured at κ → 0+ and γ < γclr ∼ 1√
⟨f |SST |f⟩

⟨f |f⟩



Robbie Rens et al., PRE 2018
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open questions

(ii) what happens at strains larger than γc?

Robbie Rens PhD thesis 2019

does the same δγ⋆(κ) also hold above γc?
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open questions

(ii) what happens at strains larger than γc?

Robbie Rens PhD thesis 2019

how does G(γ) behave above γc+δγ⋆(κ)?PPPPPPPi



open questions

(iii) is our model too simple? Are we missing essential ingredients? Does 2D tell us about 3D?

=
??



strain stiffening is a member of a set of ‘jamming’ problems:
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strain stiffening is a member of a set of ‘jamming’ problems.

common to all these problems is the coupling of the state-of-self-stress

(or the minimal eigenmode of SST ) to the imposed deformation

recall:

Wyart (phd thesis, 2005) showed that (for relaxed spring networks)

G =
1

V

∑
⟨φℓ|∂r/∂γ⟩2
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self-stress φℓ
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strain stiffening is a member of a set of ‘jamming’ problems.

common to all these problems is the coupling of the state-of-self-stress

(or the minimal eigenmode of SST ) to the imposed deformation

if φℓ is a SSS, then the coupling to deformation is ⟨φℓ|∂r/∂γ⟩

these couplings increase as a result of self-organization
�
�

�
�
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