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strain stiffening is the deformation-induced increase
in a material’'s elastic modulus

fibers that are easy to bend
but hard to stretch

collagen networks

ar modulus (Pa
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Sharma et al., Nature Physics 12, 584 (2016)
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strain stiffening is a member of a set of ‘jamming’ problems:

bulk modulus

compression

shear hardening of
soft-sphere packings
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today’s plan:

model (for any disordered material): Unit masses connected by Hookean springs
what are floppy networks?

geometric analysis of strain-stiffening networks — states of self-stress
adding bending forces into the picture

scaling theory of strain stiffening

relation to other jamming problems & some open questions
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key control parameter: coordination z < z. =2 X d

‘floppy’ networks

G = shear modulus

d = dimension of space
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‘floppy’ networks feature ‘floppy modes’

‘floppy modes’ are zero-energy modes.

They are displacements u that
do not stretch nor compress any spring

if Slu)y =0

= u is a floppy mode

S is known as the ‘compatibility matrix’
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floppy networks do not feature ‘states of self-stress’

— why do we care about this *?

Wyart (phd theSiS, 2005) showed that (for relaxed spring networks)

G =5 Y ledlor/on)?

states of
self-stress ,

no states-of-self-stress? then G = 0.
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at a critical strain 7. the shear modulus jumps

= a state of self-stress

how can this * be quantified?
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recall: states of self-stress
we construct the operator:
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and consider its spectrum
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eigenvectors |f): sets of spring-forces,

eigenvalues w?: dimensionless force unballance:
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how does w; ., vanish?

the (quasistatic) dynamics of a floppy network under shear is ill-defined

d 0*U
In generic elastic solids: H - % = 0207

d
= one can add any zero mode v (H - 1 =0) to the (under-determined) solution for d—m
2

to proceed, we introduce a weak interaction of typical stiffness x,
that eliminates the indeterminacy of dynamics/mechanics
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indeterminacy is removed.

one useful limit is K —> 0+, then one finds:
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strain stiffening plastic instabilities in elastic solids
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e in isotropic states G~k

oif &y > 0u(K), G ~ (e — )"

how can these observations be understood?
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why do we need this 2-step perturbation approach?

1) theoretical handle (to be explained hereafter)

2) allows to simulate systems at the critical strain (unfeasible otherwise)
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2) displacements U, distort (and ruin) the k = 0 zero modes:
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2) displacements U, distort (and ruin) the k = 0 zero modes:

H = 7‘[«1 "‘HZ + %soft

9 /s 9/ _
stiffness ~~ :‘i’z/‘g force ~~ HJ'/% bending ~ K

1/3

new frequency of previously-zero-modes (,U(/i) ~ K
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4) nonlinear shear modulus dG/df}/
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(i) state-of-self-stress destroyed by % ~ k3

1/3

(7i) floppy modes acquire finite frequency wsog ~ K

(i) shear modulus G ~ KV T —

(7v) nonlinear modulus % ~ K23

2/3

(v) nonaffine displacements U, ~~ K

viscosity ~v uZ
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(i)w tart with th tz:G'y’H NJT< )
e star e ansa ( ) S (H>

dy  K2/3 dy — 67(k)

2/3

(ii) since

then the strain scale (57* ~ K (& dF/dx is finite)

(iii) since G(v.) ~ xY is finite, F(0) = G(v.)

(iv) since 47 is finite, then G(’}/C) — G(W/) ~ u for Ye—77 S K23
dr|,_, K2/3 ~



scaling theory for the shear modulus G:

=7
(i) we start with the ansatz: G'(y, k) ~ F < )
(1:%) 074 (K)

dy K23 dy — 67(k)

2/3

(ii) since then the strain scale 0y, ~ K (& dF/da is finite)

(i) since G(v.) ~ £ is finite, F(0) = G(7.)
(iv) since Cfii: is finite, then G(’}/C) — G(W/) ~ Je 7 for Ye—77 S K23

T lz=0 /€2/3

Y

(v) since G ~ K for 7 < 7 then F(z) ~ 2732 or G ~ i
(Ve =)



scaling theory for the shear modulus G:

=7
(i) we start with the ansatz: G'(y, k) ~ F < )
(1:%) 074 (K)

d 1 dG  dF/d —7
(ii) since dcj ~ o7 and df = 5’];/“? then the strain scal (& dF/da is finite)

(iii) since G(v.) ~ xY is finite, F(0) = G(v.)

X

(iv) since 47 is finite, then@’yc) — G(V) ~ %—D for Ye—77 S k23
dx =0 52/3 ~
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(v) since G ~ K for 7 <K 7 then F(z) ~ 2732 or G ~ i
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predictions from scaling theory — scaling away from the critical point
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predictions from scaling theory — strain scale
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scaling theory of strain stiffening — summary

— 2-step procedure: strain with k = 0, then turn on K > 0

— we argue and validate that G ~ /10 and dG/d’y ~ /4;72/3

— simplest scaling ansatz G(f}/, ,‘i) ~ F (M)
0V (K)
— predictions: (4) linear variation of G ~~.— with strain below the critical strain ~.

(1) strain scale 07y ~ K2/

_
O =17

(iii) scaling away from the critical strain G ~
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open questions
1 1
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(7) we expect a diverging correlation length f(li) ~

— does this correlation length explain the
anomalous elasticity seen in responses

to point perturbations in fibrous gels?
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open questions

(i) divergi lation length & () 1 1
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open questions

EL and Eran Bouchbinder, arXiv:2209.04237

(7) we expect a diverging correlation length g(

— does this correlation length explain the
anomalous elasticity seen in responses
to point perturbations in fibrous gels?
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open questions

(7i) what happens at strains larger than ~.?

does the same (5"/'*<H) also hold above ~.7
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open questions

(7i) what happens at strains larger than ~.?

how does Gi(y) behave above ’)'(‘+(5’)’*(H>?

Robbie Rens PhD thesis 2019



open questions

(4i7) is our model too simple? Are we missing essential ingredients? Does 2D tell us about 3D?
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strain stiffening is a member of a set of ‘jamming’ problems:

bulk modulus

compression

shear hardening of
soft-sphere packings
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strain stiffening is a member of a set of ‘jamming’ problems.

common to all these problems is the coupling of the state-of-self-stress
(or the minimal eigenmode of SS7) to the imposed deformation

if g is a SSS, then the coupling to deformation is (w|87/0’y)

(these couplings increase as a result of self—organization)

bulk modulus harmonic spheres under shear

non-Brownian suspension viscosity
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